

2023/2024

<u>Comparing different densities of different state of</u> <u>matter</u>

	Picture	Particles	Density	Motion	Example
SOLID		Tightly packed	Usually the most dense	Particles locked into place	ICE
LIQUID	669000 000000 000000 000000	Loosely packed	Usually less dense than solids, dens er than gases	Particles move past each other	Water
GAS		Not packed at all	Least dense	Particles move past each other	Water Vapor

- If something is more dense than water, it will sink in water.
- If something is less dense than water, it will float in water.

Aspire International School

Year 8

Science Department

2023/2024

3.2 Heat and temperature

Heat	Temperature
 Heat is a measure of the energy in the particles. Heat is the total thermal energy of the vibrating particles in an object. Heat tells us about the total energy of the particles. 	 Temperature also gives us information about the energy of the particles. Temperature tells us the average energy of the particles.
Measured in joules	Measured in Celsius , Fahrenheit & Kelvin
the thermal energy (heat)	is greater at the water of
the thermal energy (heat) the higher temperature be particles that are moving for particles in both glasses of the total thermal energy (he the water with the higher te	is greater at the water of cause it contains aster, the number of water is the same, but eat) of the particles in emperature is higher.
the thermal energy (heat) the higher temperature be particles that are moving for particles in both glasses of the total thermal energy (he the water with the higher to be As there are more part energy (heat) of all the than in the water with	is greater at the water of cause it contains aster, the number of water is the same, but eat) of the particles in imperature is higher. ticles, the total thermal ese particles is greater fewer particles.

Science Department

2023/2024

Factors affecting the thermal energy

<u>Factor</u>	Factor Variation	<u>Result</u>
Number of Particles	More particles	Increased thermal Energy
	Less particles	Less thermal energy
Temperature	Higher Temperature	Increased thermal energy
	Lower Temperature	Reduced thermal energy

Temperature gives us information about two things:

- the direction that thermal energy will be transferred
- the average energy of the particles in an object.

Science Department

2023/2024

Year 8

3.3 Conservation of energy

- Law of conservation of energy:
- Energy is conserved, energy can't be created nor destroyed, but can transfer and transform.
- we mean that the total quantity of energy stays the same.
- Total energy input must equal to total energy output.
- Energy diagram can clarify the total energy input equals to the total energy output.
- The electrical energy is called the energy input and the light and thermal energy together are called the energy output.
- The light energy is **useful** and the thermal energy is **wasted**.

3.4 Moving from hot to cold

- Thermal energy will always transfer from hotter regions or objects to colder ones, and this is known as heat dissipation.

N.B: When thermal energy is removed from a hot object, we say that the thermal

energy has dissipated.

- Dissipation is used to describe energy that spreads out and becomes less useful.
- The rate, or speed, of thermal energy transfer increases :When the **temperature difference** between the hot place and the cold place increases.

Science Department

2023/2024

J/P

- When you hold the ice, thermal energy transfers away from your hand and into the ice.
- You feel cold because thermal energy has been transferred away from your hands.
- You can damage your skin by holding ice for too long, as your skin needs the correct quantity of thermal energy to function.

3.5 Ways of transferring thermal energy

The thermal energy transfers by the processes of conduction, convection and radiation.

Types of Energy Transfer						
Conduction	Convection	Radiation				
• Energy transferred by direct contact	 Occurs in gases and liquids 	 Energy transferred by electromagnetic waves such as light. 				
 Energy flows directly from warmer object to cooler object 	 Movement of large number of particles in same direction 	microwaves, and infrared radiation				
 Can occur within one object 	 Occurs due to difference in density 	Can transfer energy				
 Continues until object temperatures are equal 	 Cycle occurs while temperature differences exist 	through empty space				

Convection can happen in

liquids and gases because

the particles are free to

move.

Year 8

Science Department

2023/2024

Convection cannot happen in a solid because the particles are not free to move.

The particles in a solid can only vibrate about fixed positions.

Convection cannot happen in a vacuum as there are no particles to move.

Conduction does not work well in liquids because the particles move around more when heated, rather than just vibrating.

Conduction also does not work well in gases because the particles are far apart and the collisions are not very frequent.

Conduction cannot happen in a vacuum as there are no particles to vibrate in a vacuum.

The best emitters and absorbers of radiation:

- are dull
- are black
- have a large surface area.

The worst emitters and absorbers of radiation:

- are shiny
- are white or silver
- have a small surface area.

Shiny, white or silver surfaces reflect radiation away.

8 | Page

Science Department

2023/2024

3.6 Cooling by evaporation

DESCRIBE THE DIFFERENCE OF MOVEMENT OF PARTICLES

-temperature is a measure of the average energy of particles.

- When the particles with the highest energy escape from the water, this will lower the average energy of the particles that remain.
- Therefore, evaporation causes cooling.

EXPLAIN WHY THE FAN HELPS ARUN TO COOL (LOSE HEAT) FASTER.

- THE FAN MAKES AIR MOVE; MOVING AIR SPEEDS UP EVAPORATION;
- EVAPORATION OF SWEAT REMOVES THERMAL ENERGY FROM THE SKIN;
- SPEEDING UP THE EVAPORATION SPEEDS UP THE REMOVAL OF THERMAL ENERGY.

