

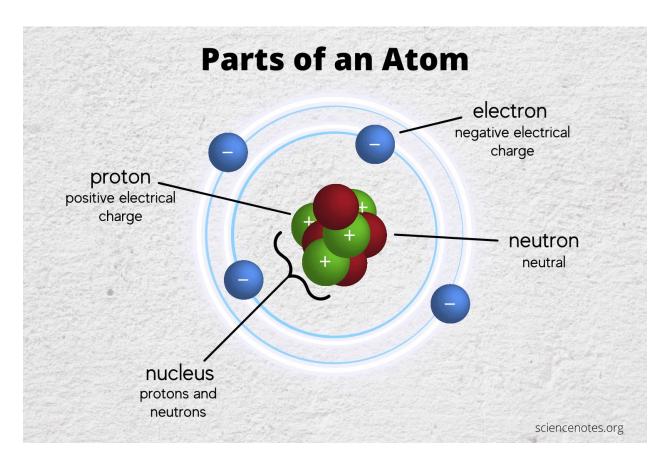
Science Department 2023/2024

Year 8

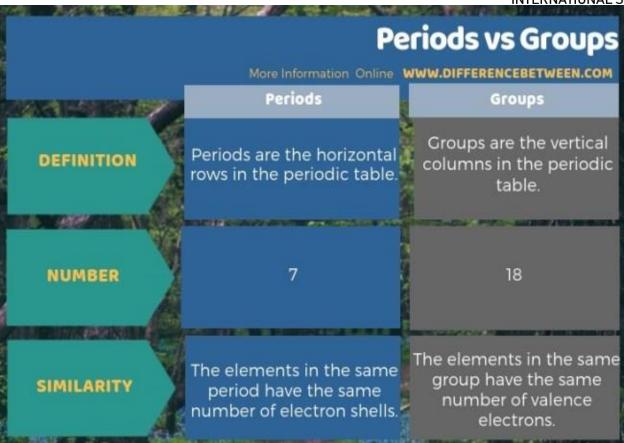
Term 1, Summary notes and Questions on Unit 2

Name	:	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	••••••
Class:						

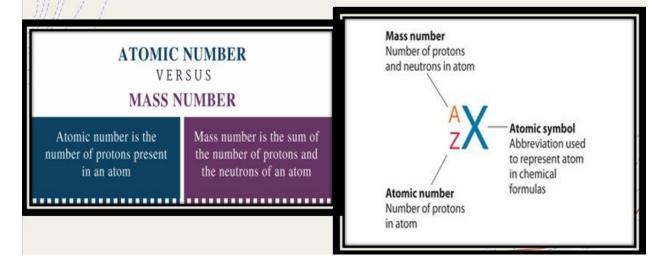
Chemistry



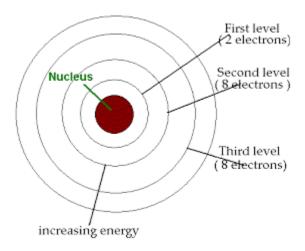
2.1 ATOMIC STRUCTURE AND THE PERIODIC TABLE


Atom is the smallest building unit of matter

What are the sub-atomic particles?

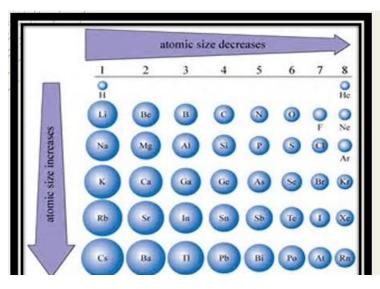

- Protons have a positive electrical charge
- Neutrons have Neutral Charge/ have no electrical charge.
- Electrons have a negative electrical charge
- Why the atom is electrically neutral? Because Number of Positive proton = number of negative electrons

The differences between atomic number and mass number


Atomic number = Number of protons = number of electrons.

Mass number = number of protons + number of neutrons.

Number of neutrons = Mass number – atomic number.

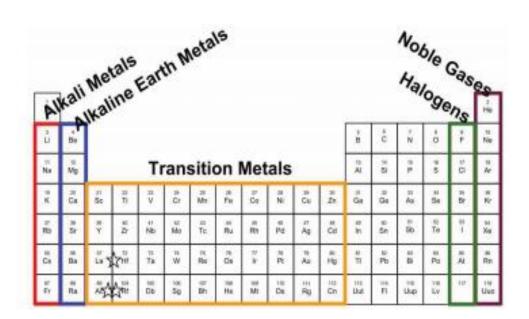

electrostatic attraction between the positive charge on the protons and the negative charge on the electrons is what holds individual atoms together.

The Rules of Electronic Configuration:

2.2 Trends in Groups within the Periodic Table

Trends of atomic size within the periodic table

- The atoms of the elements increase in mass as you progress from left to right (starting with hydrogen) and downwards in the Periodic Table.
- Decrease in mass as we move from left to right across the same period



Names of groups at the periodic table:

Group 1: The alkali metals (All the alkali metals have only 1 electron in the outermost shell)

Group 7: The Halogens (All the halogens have 7 electrons in the outermost shell)

Group 8: Noble gases (All the noble gases have 8 electrons in the outermost shell) (inert gases) (unreactive gases)

2.3 Why elements react to form compounds

Types of Bonding

Points of comparison	Ionic Bond	Covalent Bond
Definition	an attraction between a positively charged ion and a negatively charged ion	a bond made when a pair of electrons is shared by two atoms
Melting and boiling points	very high melting points and boiling points. This is because there are very strong electrostatic forces holding the ions together	Covalent substances made from simple molecules have low melting points and boiling points because although the forces holding the molecules together are strong, the forces between the molecules, intermolecular forces are weak.
Electrical conductivity	Ionic compounds will conduct electricity if they are dissolved in water or if they are melted to form a liquid because of the presence of free moving ions.	Covalent substances made from simple molecules do not conduct electricity

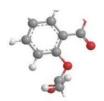
Aspire International School Science Department

- The metal <u>loses</u> electrons to form + ion.
- Non-metal gains electrons to form ion.

Points of Comparison	Group 1	Group 7
Atomic size	As we move down across	As we move down across
	the group the atomic size	the group the atomic size
	will increase	will increase
Electrostatic attraction	Electrostatic force will	Electrostatic force will
force	decrease	decrease
Losing or gaining	It will be easily for	It will be easily for
electrons	Potassium to lose	fluorine to gain electrons
	electrons than lithium	than bromine and
	and sodium and form	chlorine and form
	positive ion	negative ion
Reactivity	Potassium is more	Fluorine is more reactive
	reactive than lithium and	than bromine and
	sodium	chlorine

lon	Atom
-an atom which has gained at least one	-Smallest building unit of matter.
electron to be negatively charged or	-Not stable because the outer most
lost at least one electron to be	energy level not filled with the
positively charged	electrons
-More stable than atom as its	(atoms of group 1 & 7)
outermost energy level is fill with	
electrons	

Molecule



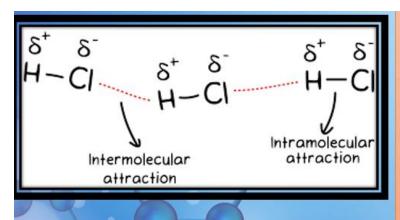
Compound

A molecule is made up of two or more atoms that are bonded together.

A chemical compound is a chemical substance composed of many identical molecules (or molecular entities).

2.4 Simple and giant structures

Types of Compounds				
Ionic Compounds	Covalent Compounds			
Are formed due to electrostatic	Are formed due to sharing of pair of			
attraction force between positive ion	electrons.			
and negative ion.				
Compounds are formed in regular	Covalently bonded substances fall into			
pattern , and regular shape and form	two main types:			
giant structure called lattice.	 simple covalent molecules. 			
	giant covalent structures			
	Simple molecules like carbon dioxide			
	(CO2), $(O2)$, $(Methane)$			
	Giant covalent structure like diamond			
	and graphite.			
Strong compounds due to the	Weak compounds because the force			
electrostatic attraction force between	between the molecules which is			
positive and negative ions	intermolecular forces are weak.			



Diamond

- Each carbon atom forms four strong covalent bonds.
- These large structures are called *macromolecule*.

Graphite

- The carbon atoms each make bonds with three other atoms.
- Soft material.
- Graphite is used for the 'lead in pencils, and for lubricating moving parts in machines.

The forces holding the molecules together are very strong.

But the forces between the molecules are weak. The forces between the molecules are called intermolecular forces.

Extra Questions On Unit 2:

Solve:

1. Chlorine (35¹⁷ Cl)

Protons = ...17

Electrons = ...17...

Neutrons = ..18....

Electronic structure:

2. Fluorine (19 9F)

Protons = ...9....

Electrons = ..9

Neutrons = ..10.....

Electronic structure:

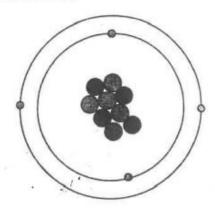
Aluminium (27 ¹³Al)

Protons = ...13...

Electrons = ...13....

Neutrons = ...14...

Electronic structure:


2,8,7

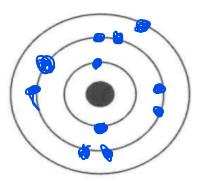
2,7

2,8,3

Look at the diagram of a beryllium atom.

(a)	(i)	How many electrons are in the atom?	14 M	
		*	4	
			101101111111111111111111111111111111111	[1]
	(ii)	How many neutrons are in the atom?		
			5	141
			5	[1]
(b)	Wri	te down the chemical symbol for beryllium.		
			Be	
				[1]
	(c)	Lithium is the third element in the Periodic Table.		
		Beryllium is the fourth element.		
		Lithium has fewer neutrons than beryllium.	T .	
		Describe two other ways in which the structuberyllium atom.	re of a lithium atom is different	from a
		1 Lithium has less protons/ electrons		
		Lithium has lower atomic number		[2]

1 Sodium and lithium are both elements in Group 1 of the Periodic Table.


H hydrogen 1	
Li	Be
lithium	beryllium
3	4
Na	Mg
sodium	magnesium
11	12
K	Ca
potassium	calcium
19	20

					helium 2
B boron 5	C carbon	N nitrogen 7	O oxygen 8	F fluorine 9	Ne neon 10
AI aluminium 13	Si silicon 14	P phosphorus 15	S sulfur 16	CI chlorine 17	Ar argon 18

(a) Write down the number of protons in a sodium atom.

11 [1]

(b) Complete the diagram to show how the electrons are arranged in a sodium atom.

NOT TO SCALE

[2]

2 This table contains some data about the elements in Group 7 of the Periodic Table. The elements are given in descending order.

٦L

Element	Atomic number	Mass number	Melting point in °C	Boiling point in °C	Reactivity
fluorine	9	19	-220	-188	most reactive
chlorine	17	35	-101	-34	
bromine	35	80	-7	59	less reactive
iodine	53				
astatine	85				

a What trends can you see in this group of the Periodic Table?

The trends are:

- the melting points increase as you go down the group
- the boiling points increase as you go down the group
- the elements become less reactive as you go down the group
- b Iodine is the fourth element in this group. Would you expect the melting point of iodine to be higher or lower than that of bromine?

The melting point of iodine will be higher than that of bromine:

Aspire International School Science Department

OL

The electronic structures of five atoms of different elements, A, B, C, D and E, are shown below.

Answer the following questions about these structures. Each structure may be used once, more than once or not at all.

Е

D

- (a) Which structure
 - (i) is in Period 4 of the Periodic Table.
 - (iii) is a noble gas, В
 - (iii) is in Group II of the Periodic Table, Ε
 - (iv) has five electrons in its outer shell,
 - Α (v) has a proton (atomic) number of 7,
 - (vi) represents a fluorine atom?

[6]

Number of period will indicates the number of energy levels (shells) while the number of group will indicates the number of electrons in the outer shell

[1]

2 The table shows information about elements.

	number of electrons in			
atomic symbol	one atom of the element	one ion of the element		
Li	3	2		
Mg	12	10		
Al	13	10		
Cl	17	18		
K	19	18		
Ca	20	18		

Cl

Κ

(a) (i) Which atom loses three electrons to form an ion?
Circle the correct answer.

(ii) Which atom forms a negative ion?

Mg

CI

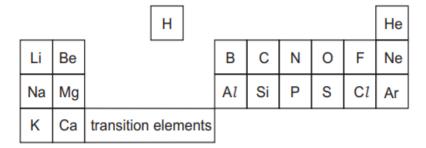
Explain your answer.

Li

Because it gains electron

(iii) Two elements in the table are in Group 1.

Write down the atomic symbols of these two elements.


Li and K

CHOOL

2 Look at the diagram.

It shows part of the Periodic Table.

(a) Write down the chemical symbol for the element which has the electronic structure 2.8.4.

Si [1]

(b) Write down the chemical symbol for an element in the same group as Be.

Mg or Ca [1

(c) Hydrogen and oxygen react together to make molecules of water.

Write down the type of bonding in a water molecule.

Covalent

[1]

-Compare between ionic and covalent bonds in terms of:

Definition, strength, melting and boiling point, and electrical conductivity.

You can check p. 6 and 8 the tables of comparison at summary notes of unit 2